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Abstract

While there has been significant progress to use simulated
data to learn robotic manipulation of rigid objects, apply-
ing its success to deformable objects has been hindered by
the lack of both deformable object models and realistic non-
rigid body simulators. In this paper, we present Real Gar-
ment Benchmark (RGBench), a comprehensive benchmark
for robotic manipulation of garments. It features a diverse set
of over 6000 garment mesh models, a new high-performance
simulator, and a comprehensive protocol to evaluate garment
simulation quality with carefully measured real garment dy-
namics. Our experiments demonstrate that our simulator out-
performs currently available cloth simulators by a large mar-
gin, reducing simulation error by 20% while maintaining a
speed of 3 times faster. We will publicly release RGBench to
accelerate future research in robotic garment manipulation.
Website: https://rgbench.github.io/

Introduction
Robotic manipulation of deformable objects—most notably
the challenge of handling garments—stands as a critical
frontier in robotics research, with wide-ranging applications
in household assistance and industrial automation (Sanchez
et al. 2018). These two major challenges for handling gar-
ments are (a) the vast, virtually infinite-dimensional state
space of garments makes their configuration difficult to rep-
resent; and (b) the highly non-linear, under-actuated thin-
shell dynamics, which makes their behavior difficult to pre-
dict (Zhang et al. 2024). The high dimensional property and
dynamic complexity are further exacerbated by pervasive
contact and self-collision, where the thin fabric’s constant
folding and sliding create an intricate and rapidly changing
landscape of physical interactions.

To overcome these challenges while mitigating the costs
and risks of real-world trial-and-error, researchers increas-
ingly turn to physics simulators, which offer a safe and
scalable environment for developing manipulation policies.
However, prevailing robotic simulators suffer from two crit-
ical limitations. First, their physical fidelity is often insuffi-
cient. To achieve the necessary computational performance,
they rely on simplified models like Position-Based Dynam-
ics (PBD), which are approximations of true continuum me-
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Figure 1: Robotic Manipulation of Garments and Fabrics
with Diverse Materials in RGBench

chanics. As a result, they exhibit unrealistic physical be-
haviors, including distortions, stretching, and frequent self-
penetration failures, creating a significant sim-to-real gap.
Second, even with these simplifications, the performance of
these simulators is often too slow. The computational re-
sources required for large-scale parallel training of modern
reinforcement learning algorithms are often unattainable.

In order to address the sim-to-real gap, it is essential
to have benchmarks and datasets that systematically eval-
uate the fidelity of simulation. The few existing bench-
marks that attempt to quantify the sim-to-real gap are typ-
ically restricted to simple cases such as one-dimensional
ropes (Lim et al. 2022) or basic simple fabrics (e.g. hand-
kerchiefs) (Blanco-Mulero et al. 2024).

In this paper, we present Real-Garment Benchmark (RG-
Bench) that includes GarmentDynamics,a novel high-speed
and high-accuracy cloth simulator, and a diverse set of 3D
garment models with physically accurate parameters. The
contributions of this paper are:

• A diverse 3D garment model dataset with measured
physical properties and motions. We introduce a
novel public dataset for cloth manipulation. Its core fea-
ture is a rich collection of garments that span a wide vari-
ety of materials and topological complexities. Crucially,
this dataset provides high-fidelity 3D ground-truth data



for garment configurations resulting from both quasi-
static and dynamic real-world robotic manipulations.

• A novel cloth simulator with accuracy, robustness,
and efficiency. We present GarmentDynamics, a novel
physics-based simulator specifically engineered to over-
come key limitations of existing robotics simulators in
handling complex garment dynamics. Its design philos-
ophy focuses on achieving physical accuracy, numeri-
cal stability, and collision robustness, and high compu-
tational performance through a combination of advanced
physical models, accurate material property acquisition,
and GPU acceleration. It will be released.

• A dedicated benchmark for evaluating the sim-to-real
gap of cloth simulators. We introduce Real-Garment
Benchmark(RGBench), the benchmark designed to en-
able the rigorous evaluation and comparison of current
mainstream physics simulators on the challenging task of
garment manipulation. It provides a standardized frame-
work to quantify the sim-to-real gap of any given sim-
ulator, featuring the richest collection of real-world gar-
ments and robotic actions to date.

Related Work
Deformable Object Manipulation Benchmark
To systematically advance the field of robotic manipulation
of deformable objects, benchmarks are essential to assess al-
gorithm performance, define limitations, and establish stan-
dardized comparisons (Longhini et al. 2024). The majority
of these evaluation platforms are situated within simulated
environments, with mainstream robotics simulators like Mu-
JoCo (Todorov, Erez, and Tassa 2012), PyBullet (Coumans
and Bai 2016–2021), and Isaac Sim (NVIDIA Corporation
2021–2024) being common choices. Representative works
include SoftGym (Lin et al. 2021), and more recent Gar-
mentLab (Lu et al. 2024) and DexGarmentLab (Wang et al.
2025) were built in IssacSim, and Daxbench (Chen et al.
2022), which is based on a differentiable simulator. These
benchmarks often utilize models from large open-source
simulated datasets, such as ClothesNet (Zhou et al. 2023)
and Cloth3D (Bertiche, Madadi, and Escalera 2020), to cre-
ate diverse evaluation scenarios.

Despite the sophistication of simulation-based bench-
marks, the “sim-to-real” gap remains a central challenge.
Unlike rigid bodies that can be simulated with high fidelity,
the extreme deformability of objects like cloth makes accu-
rate modeling exceptionally difficult, as policies trained in
simulation often fail when transferred to the real world. This
has motivated a parallel line of research focused on curating
real-world datasets, from large-scale image repositories like
DeepFashion (Liu et al. 2016), household cloth collections
with an RGB-D dataset from (Garcia-Camacho et al. 2022).

To benchmark the robotic manipulation for the de-
formable object, more targeted efforts have sought to mea-
sure the reality gap. (Lim et al. 2022) quantified this gap
for 1D cables in simulators like PyBullet and Isaac Sim.
(Blanco-Mulero et al. 2024) evaluated the performance dif-
ference of various simulators in dynamic and quasi-static
fling motions on simple cloth towels, chequered, and linens.

While these efforts represent valuable progress, their focus
has largely been confined to structurally simple 1D cables
and basic simple fabrics. A notable gap remains in the anal-
ysis of more complex garments, which we address by pro-
viding a benchmark with ground truth to measure the sim-
to-real gap for common robotic clothing manipulation tasks:
grasping, flinging, and folding.

Physics-Based Cloth Simulation
A physics-based cloth simulator can represent cloth and
its deformation in three main ways: as a network of
springs (Choi and Ko 2002), a collection of elements (Müller
et al. 2005; Volino, Magnenat-Thalmann, and Faure 2009),
or a cluster of yarns (Kaldor, James, and Marschner 2008;
Cirio et al. 2014). Among these, the element-based repre-
sentation has become increasingly popular due to its balance
between physical accuracy and computational cost.

Given a cloth representation, the key question is how
to advance its dynamics over time. Explicit time inte-
gration (Bridson, Fedkiw, and Anderson 2002; Bridson,
Marino, and Fedkiw 2003) is conceptually simple, but re-
quires very small time steps for stability, becoming compu-
tationally expensive. Implicit time integration (Baraff and
Witkin 1998) improves stability and allows larger time steps,
but remains costly because it requires solving large lin-
ear systems. Position-based dynamics (PBD) (Müller 2008;
Müller et al. 2014) was introduced as an alternative, em-
phasizing simplicity and robustness at the expense of physi-
cal accuracy and scalability, particularly for high-resolution
meshes. Projective dynamics (Bouaziz et al. 2014) later
unified PBD and implicit integration under a common
constraint-based framework, demonstrating their close rela-
tionship. This insight has inspired a line of research on fast
cloth simulation (Wang 2015; Peng et al. 2018; Chen et al.
2024), highlighting the potential of GPUs to accelerate im-
plicit methods for real-time cloth simulation.

Efficient and robust collision handling remains one of
the most challenging problems in cloth simulation. Over
the years, researchers have explored various aspects of this
problem — often leveraging GPUs — including collision
culling (Tang et al. 2011), collision detection (Brochu, Ed-
wards, and Bridson 2012), penetration untangling (Baraff,
Witkin, and Kass 2003), and collision response meth-
ods (Tang et al. 2016). More recently, potential-based con-
tact formulations (Li, Kaufman, and Jiang 2021; Wu et al.
2020) have shown strong promise for robust collision han-
dling, and recent work has focused on accelerating these
methods on GPUs (Lan et al. 2024; Li et al. 2023).

Beyond the core engine, realism depends critically on ac-
curate physical parameters. These can be acquired through
optimization-based methods that match observed motion
(Miguel et al. 2012) or learning-based approaches that in-
fer parameters directly (Rasheed et al. 2021). However, the
more fundamental distinction lies in how the measurement
data is collected: either from videos of uncontrolled or un-
constrained cloth motion (Yang, Liang, and Lin 2017), or
from carefully controlled experiments (Wang, O’Brien, and
Ramamoorthi 2011; Feng et al. 2022). We argue that con-
trolled experiments are more reliable for isolating and pre-



cisely measuring individual material properties. For this rea-
son, we also adopt strategies based on dedicated measure-
ment devices.

The RGBench Framework
Figure 2 presents an overview of the RGBench framework,
which integrates a diverse garment dataset, dual-arm robotic
setups, and the GarmentDynamics simulation system, cover-
ing three core tasks to bridge real-world and simulated gar-
ment interaction research.
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Figure 2: Overview of RGBench framework
RGBench Dataset
Diverse Garment Assets Our dataset encompasses a
diverse range of garments with deliberate variations in
size, style, and material to ensure comprehensive coverage
of real-world manipulation scenarios shown in Figure 3.
Specifically, the dataset encompasses a total of 6k+ garment
models, consisting of two components: 4k+ self-collected
industry-level production-ready assets, which feature high-
quality meshes, producible features (including elasticity,
folding edges, and seaming lines), and physically accurate
parameters (such as stretch stiffness, bending stiffness, and
density); and 2k+ garment meshes sourced from Clothes-
Net (Zhou et al. 2023). Specifically, the collection com-
prises garments of varying sizes (from small to large), di-
verse styles (fitted, loose-fitting, structured, and flowy), and
a range of materials—cotton, linen, wool, polyester, nylon,
silk, etc., each with distinct fabric properties. For manipula-
tion tasks, we select 9 types of cloth to obtain the real point
cloud during interaction as their ground truth (GT).Ground Truth Acquisition Our methodology for acquir-
ing ground truth data is twofold, encompassing the static
physical properties of each garment and its dynamic behav-
ior during robotic manipulation.
• Garment Physical Ground Truth: To create physically-

grounded digital twins, we ensure both geometric and
physical accuracy. For geometric accuracy, it is achieved
by importing production-grade DXF pattern files to build
1:1 scale models, with seam lines defined to mirror the
physical assembly. For physical accuracy, the Tensile
Tester (SST1000) and Bending Tester (SBE1000) is used
to profile the core mechanical properties of each fab-
ric (e.g., tensile/bending stiffness, thickness, weight), as
shown in part 3 by Figure 3. This measurement protocol
adheres to established ASTM standards (D1388 (ASTM
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Figure 3: RGBench garment dataset

International 2018), D3107 (ASTM International 2017)).
This process yields a physically-grounded asset for sim-
ulation.

• Manipulation Ground Truth We employ the dual-
robotic setup (AGILEX Piper or JAKA K1 with DH
PGC-50-35 grippers) to manipulate the garments. An In-
tel RealSense L515 camera records the entire process,
capturing the complex deformations of the garment as
a stream of RGB point cloud data, which are segmented
by Grounded-SAM (Ren et al. 2024). This captured point
cloud serves as the definitive ground truth (Preal) against
which all simulation experiments are compared.

RGBench Evaluation
Eval Tasks: Robotic Manipulation Our benchmark is
built on Grasp, Fling, and Fold—three foundational primi-
tives that serve as the cornerstones of robotic garment ma-
nipulation. These primitives systematically address the core
challenges of the field: A robot must be able to reliably pick
up a garment (Grasp), dynamically reconfigure its shape in
the air (Fling), and precisely arrange it through contact-rich
interactions (Fold). Each primitive is specifically designed
to stress-test a distinct and critical aspect of the underlying
physics simulation.

• Grasp: The task begins with a flat garment, with prede-
fined grasp points near the shoulder region. The robotic
arms then synchronously grasp these points and lift the
garment vertically. This primitive primarily evaluates the
simulator’s ability to model initial contact dynamics, fric-
tional forces, and gravity-induced deformation.

• Fling: Beginning with the garment held aloft by the
grippers, the dual arms execute a rapid forward-then-
backward trajectory to induce aerial fluttering of the gar-
ment. This task is specifically designed to challenge the
simulator’s handling of high-speed kinematics, inertial
effects, aerodynamic drag, and large-scale deformation.

• Fold: Starting again with a flat-laid garment, the dual
arms grasp the shoulder sections, lift slightly, and trans-
late forward to the bottom edge. This procedure tests the
simulator’s capacity to handle complex, evolving self-
contact, inter-surface friction, and the settling of the fab-
ric into a stable, folded configuration.



Eval Preprocess To ensure high-fidelity correspondence
between our physical experiments and simulations, we per-
form a rigorous three-step alignment process. First, for ini-
tial state alignment, we standardize the garment’s pose using
a physical template of its outline. Second, the relative pose
between the robot and camera is determined by hand-eye
calibration or the Iterative Closest Point algorithm, which
ensures high-precision registration. Finally, to achieve tem-
poral synchronization, we apply a fixed, optimal time delay
to the data streams to compensate for system latency.

Eval Metrics We utilize Chamfer Distance(CD) and
Hausdorff Distance(HD) as the core metrics for evalution.
CD quantifies the average dissimilarity between two point
sets. For a simulated mesh with vertices Vt and a real-world
point cloud Pt at time t, the sim-to-real CD is defined as:

CDs2r (Vt,Pt) :=
1

|Vt|
∑
v∈Vt

min
p∈Pt

∥v − p∥1 (1)

Conversely, the unidirectional real-to-sim CD reverses the
point set order, calculated as:

CDr2s (Pt,Vt) :=
1

|Pt|
∑
p∈Pt

min
v∈Vt

∥p− v∥1 (2)

where |Vt| and |Pt| denote the number of vertices in the cor-
responding mesh, and ∥ · ∥1 is the Manhattan distance. This
dual formulation accounts for the disparity in point density
between real and simulated data, ensuring both perspectives
of alignment are captured.

HD focuses on capturing the worst-case alignment error.
The unidirectional HD is:

HDs2r (Vt,Pt) := max
v∈Vt

min
p∈Pt

∥v − p∥1 (3)

HDr2s (Pt,Vt) := max
p∈Pt

min
v∈Vt

∥p− v∥1 (4)

These metrics highlight extreme deviations from both the
simulated and real-world perspectives, which is crucial for
identifying critical failures in dynamic cloth manipulation,
such as large deformations or self-occlusions.

Unlike prior work using only sim-to-real metrics, we use
both sim-to-real and real-to-sim metrics. Simulators, espe-
cially particle-based ones, have unstable garment simula-
tions (e.g., model expansion/explosion) that inflate sim-to-
real metrics, making them useless for comparison. Real-to-
sim metrics show how well real garment surfaces match sim-
ulated meshes. We analyze both, focusing more on real-to-
sim errors as they better reflect simulation fidelity to real
observations and are less affected by simulator instabilities.

Simulator
To rigorously evaluate the simulation-to-reality gap, our
benchmark is built upon an engine-agnostic framework. Any
simulator integrated into this framework must support sev-
eral key functionalities: the simulation of both rigid and de-
formable bodies, robust collision handling, variable integra-
tion timesteps, and the ability to query garment vertex states.
To provide a comprehensive baseline, we incorporate three
mainstream robotics simulators that meet these criteria: Mu-
JoCo, PyBullet, and NVIDIA Isaac Sim.

GarmentDynamics Design
Core Components The following sections elucidate its
architecture, detailing the design choices behind its GPU-
accelerated implementation. We further analyze the mecha-
nisms engineered to achieve superior accuracy, robustness,
and computational efficiency for complex garment manipu-
lation tasks.

Continuum-Based FEM Model In our simulator, cloth is
treated as a continuous elastic surface discretized into a tri-
angular mesh composed of linear triangular elements. The
constitutive behavior is modeled in both in-plane and out-
of-plane modes using an anisotropic extension of the model
proposed in (Baraff and Witkin 1998), allowing us to ac-
count separately for the stretching and bending responses
along the warp, weft, and diagonal directions of the fabric.
Furthermore, we introduce nonlinearity into the out-of-plane
behavior by defining the bending resistance as a quadratic
function of the bending curvature. This formulation enables
our model to more accurately capture cloth wrinkling, which
strongly depends on bending resistance.

Physical Properties and Interactions The realism of a
physics-based cloth simulator depends not only on the un-
derlying physical models, but also on how accurately the
material properties are measured and how effectively self-
collisions and cloth–environment interactions are handled.
Leveraging the physically grounded nature of our model,
our simulator directly uses fabric properties measured from
real-world samples, including mass density, thickness, elas-
tic moduli, and surface roughness for friction. For collision
handling, we combine potential-based contact forces with
a collision untangling mechanism (Volino and Magnenat-
Thalmann 2006). This hybrid strategy achieves high per-
formance while maintaining robustness, preventing penetra-
tions even under frequent and severe contact conditions.

GPU-Accelerated Implicit Time Integration Finally, we
advocate using an implicit time-integration scheme in our
solver. Our solver leverages recent advances in GPU ac-
celeration — such as multiresolution preconditioning (Wu,
Wang, and Wang 2022) and potential-based contact handling
— to efficiently simulate cloth dynamics, even for meshes
with a large number of degrees of freedom. Compared with
the position-based dynamics used in Isaac Sim and explicit
integration methods, implicit integration offers higher phys-
ical accuracy and improved numerical stability, even with
large time steps and significant deformations.

GarmentDynamics GPU Implementation
GPU-Based Solver To achieve high performance, our
simulator executes all computation stages entirely on the
GPU, combining algorithmic advances with hardware-level
optimizations. Cloth dynamics are solved using implicit Eu-
ler integration on the GPU, where each time step is formu-
lated as an energy minimization of the following objective:

L(x) = 1

2h2
(x− xt)M(x− xt) + E(x), (5)

where h is the time step, x ∈ R3N denotes the unknown
positional vector of the N mesh vertices, xt is the positional



vector from the previous time step, M ∈ R3N×3N is the
lumped mass matrix, and E(x) represents the potential en-
ergy. Unlike (Baraff and Witkin 1998), our simulator solves
Eq. 5 using a small number of inexact Newton iterations,
each involving the solution of a linear system via a fixed
number of preconditioned conjugate gradient (PCG) sub-
iterations. Thanks to GPU acceleration, our solver achieves
both fast convergence and efficient runtime.

Multilevel Preconditioning To further accelerate the con-
vergence of our PCG solver, we adopt an algebraic multi-
grid preconditioner within the multilevel additive Schwarz
(MAS) framework (Wu, Wang, and Wang 2022). This pre-
conditioner is distinctive in that it approximates the system
matrix with a block-diagonal inverse constructed from many
small, non-overlapping subdomains across multiple resolu-
tion levels. At the start of the linear solve, the preconditioner
computes the inverse of each block using Gauss–Jordan
elimination and stores these inverses in GPU memory. Dur-
ing runtime, applying the preconditioner to a residual vec-
tor becomes a simple conflict-free, per-block sparse ma-
trix–vector multiplication, with each block handled by a
GPU thread. As demonstrated in (Wu, Wang, and Wang
2022), this preconditioner effectively reduces the condition
number of the system, enabling the PCG solver to converge
more rapidly within a fixed number of iterations.

Collision Detection Another major factor contributing to
simulation performance is collision detection. To acceler-
ate it, we develop a GPU-based bounding volume hierar-
chy structure, in which each query is efficiently executed in
parallel using NVIDIA RTX ray intersection features. Com-
pared with the general-purpose implementations in Isaac
Sim or Bullet, our approach is significantly faster, capable
of handling millions of broad-phase collision tests per sec-
ond. Our implementation further employs optimized sparse-
matrix data structures and CUDA kernel fusion to maximize
memory coalescing and further boost raw throughput.

Experiments and Results
Garment Manipulation Mode: Our framework provides
two garment manipulation modes: robot interaction mode
and pseudo interaction mode. (1) The robot mode utilizes
URDF files and joint angles to simulate complete robotic
behavior and garment dynamics simultaneously. (2) The
pseudo mode achieves cloth manipulation simulation by di-
rectly controlling the movement of cloth intersection ver-
tices, thereby simplifying the simulation of robotic arm mo-
tions, which focuses on the garment dynamics itself during
manipulation.

Deformable Parameters: Garment simulation involves a
diverse set of parameters. For parameters with clear physi-
cal meanings that can be directly measured, we set their val-
ues based on experimental measurements using specialized
instruments. For environmental parameters such as friction
and damping, we first select a representative garment to per-
form parameter optimization. These optimized parameters
are then applied uniformly across all garments, ensuring that
environmental influences are consistent.

Validation on a Foundational Cloth Benchmark
To validate the fundamental accuracy of GarmentDynamics,
we replicate the dynamic and quasi-static cloth deformation
experiments on the rectangle chequered rag dataset from a
widely accepted public benchmark (BCM) (Blanco-Mulero
et al. 2024). The garment state generated by GarmentDy-
namics is compared against the results from Mujoco and
FLEX, which have the best performance in this dataset.

Mode Metric Mujoco FLEX Ours

Dynamic CDs2r 0.067± 0.026 0.164± 0.134 0.062± 0.028
HDs2r 0.154± 0.035 0.280± 0.180 0.150± 0.051

Quasi static CDs2r 0.076± 0.025 0.072± 0.019 0.0389± 0.006
HDs2r 0.186± 0.055 0.171± 0.024 0.094± 0.022

Table 1: Simulation results on BCM benchmark

As shown in Table 1, GarmentDynamics demonstrates
distinct strengths in quasi-static scenarios: it outperforms the
state-of-the-art (FLEX) by 46% in CD and 45% in HD, val-
idating its accuracy in capturing cloth deformations under
slow, contact-dominated motions.

For dynamic tasks, we identified that a key factor affect-
ing performance is the notable noise within the benchmark’s
input anchor point trajectories. To rigorously evaluate our
simulator’s resilience, we applied it directly to the raw data
without the pre-processing steps. Despite that, GarmentDy-
namics still achieves the best performance, which highlights
its superior robustness to imperfect inputs.
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Simulation Efficiency and Scalability
To evaluate the performance and scalability of our proposed
simulator, we conduct a comprehensive benchmark against
three widely used physics simulation environments: Isaac
Sim, MuJoCo, and PyBullet. The benchmark task consisted
of simulating a deformable cloth model with progressively
increasing complexity, specifically with 5k, 10k, 20k, and
40k vertices. Two key performance metrics were measured:
(1) Initialization Time, the one-time cost in seconds to load
the scene and assets at 5k, 10k, 20k, and 40k vertices. (2)
Average Step Time, the average computation time in mil-
liseconds per simulation step, calculated over 100 iterations
after the simulation reached a stable state.



Cloth Action CDr2s HDr2s

pybullet isaacsim ours pybullet isaacsim ours

Cakeskirt Fling 0.0588 0.0598 0.0406 0.1767 0.1872 0.1725
Cakeskirt Fold 0.0266 0.0308 0.0179 0.1082 0.1082 0.0962
Cakeskirt Grasp 0.0487 0.0517 0.0269 0.1573 0.1719 0.1222

Coat Fling 0.1071 0.0815 0.0379 0.2737 0.2406 0.1239
Coat Fold 0.0309 0.0346 0.0279 0.1251 0.1182 0.1083
Coat Grasp 0.0573 0.0605 0.0320 0.1817 0.1395 0.1053

Dress Fling 0.0889 0.0928 0.0687 0.2007 0.2228 0.1765
Dress Fold 0.0331 0.0459 0.0187 0.1229 0.1338 0.0800
Dress Grasp 0.0433 0.0490 0.0221 0.1468 0.1563 0.0953

Hoodie Fling 0.0310 0.0352 0.0256 0.1307 0.1493 0.1254
Hoodie Fold 0.0240 0.0302 0.0225 0.0952 0.0966 0.1493
Hoodie Grasp 0.0275 0.0308 0.0217 0.0947 0.1008 0.0882

Pleat Skirt Fling 0.0540 0.0388 0.0326 0.1236 0.1089 0.0736
Pleat Skirt Fold 0.0256 0.0255 0.0126 0.1383 0.1199 0.0857
Pleat Skirt Grasp 0.0241 0.0201 0.0159 0.0878 0.0908 0.0707

L-Sleeves Fling 0.0518 0.0600 0.0422 0.1770 0.2058 0.1547
L-Sleeves Fold 0.0280 0.0308 0.0243 0.1252 0.1171 0.0982
L-Sleeves Grasp 0.0347 0.0312 0.0280 0.1394 0.1123 0.1106

T-shirt Fling 0.0532 0.0567 0.0419 0.1522 0.1710 0.1197
T-shirt Fold 0.0227 0.0314 0.0132 0.0778 0.0966 0.0512
T-shirt Grasp 0.0348 0.0341 0.0226 0.1109 0.1058 0.0798

Table 2: Metrics across garment types and actions in pseudo
mode

The experimental results are shown in Figure 4, where our
simulator shows a significant improvement in performance.
Among the baseline simulators, IsaacSim is the most com-
petitive performer, maintaining a respectable step time of
26.6 ms even at a high complexity of 40k vertices. How-
ever, its performance is less efficient at lower complexities.
In contrast, our simulator consistently outperforms IsaacSim
by 3.0× to 7.0×, achieving a minimum step time of just
2.7 ms. Conversely, both PyBullet and MuJoCo experience a
dramatic increase in initialization and simulation time as the
number of vertices grows. Our simulator runs approximately
65.0× faster than MuJoCo at 20k vertices and 16.0× faster
than PyBullet at 40k. Furthermore, MuJoCo fails entirely at
the 40k vertex level due to computational complexity, high-
lighting the superior robustness of our approach. In addition
to runtime execution, our simulator also exhibits superior
initialization efficiency, reducing setup overhead by about
92% compared to PyBullet, and by over 93% on average
compared to IsaacSim and MuJoCo.

Experimental results confirm the superior computational
efficiency of our proposed simulator. Compared to state-
of-the-art simulators, our method exhibits significant ad-
vantages both algorithmically and in implementation. On
the algorithmic side, we integrate multilevel precondition-
ing, inexact Newton iterations, and a hybrid collision-
handling strategy. These techniques enable substantially
faster convergence than the constraint-based methods em-
ployed by IsaacSim and PyBullet, particularly for high-
resolution meshes with a large number of vertices. On
the implementation side, our simulator leverages advanced
GPU acceleration techniques, fully utilizing features such
as RTX-based ray intersection and kernel fusion for optimal
performance.

Sim-to-Real Gap Across Manipulation Tasks
To evaluate the consistency and robustness of GarmentDy-
namics in handling diverse physical interactions from quasi-
static to dynamic modes, we design a standardized rubric of
three core manipulation actions for each garment.

A qualitative comparison is present in Figure 5, which vi-
sualizes the sim-to-real performance for folding a dress. The
left column shows the real-world manipulation sequence;
The center column visualizes the point-wise distances be-
tween the simulated and real point clouds; and the right col-
umn shows the process of three evaluated simulators. No-
tably, Isaac Sim exhibits instability upon gripper contact
with the garment, often resulting in exaggerated twisting or
inflation. PyBullet fails to generate valid grasping visuals, as
its robot arm cannot reliably grasp the garment, only provid-
ing images of end-effector points. In contrast, GarmentDy-
namics remains stable throughout the entire sequence, ow-
ing to its robust hybrid collision-handling strategy. Most im-
portantly, the point cloud generated by our simulator shows
the closest alignment with real-world data, further validating
its ability to replicate authentic garment behavior.

Figure 5: Real-to-Sim Comparison for Folding (left col-
umn) Real-world robotic folding sequence. (middle column)
Point cloud comparison: real-world (white), our simulator
(blue), best of other simulators (Grey). (right column) Gar-
ment folding state in all simulators.

We extend this analysis quantitatively across the three ma-
nipulation tasks in Figure 6, using the T-shirt as a repre-
sentative example. Full results for all garments are included
in the Appendix. Across tasks, GarmentDynamics consis-
tently achieves the smallest sim-to-real discrepancies, with
narrow error bars highlighting its repeatability and stabil-
ity. For grasp and fold tasks, GarmentDynamics exhibits a
strong ability to accurately model quasi-static contact me-
chanics, where precise prediction of deformations is criti-
cal, with CDr2s error reduction up to 35% and 58%. Mean-
while, we observe that the sim-to-real gap widens for the
dynamic manipulation task fling as the high-speed interac-
tion. Despite this, GarmentDynamics still maintains a clear
advantage in these dynamic scenarios, improving CDr2s
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Figure 6: Qualitative results of different actions for a T-shirt

and HDr2s by over 20%. This versatility stems from its
refined physical-based material modeling and robust GPU-
based solver, which better accounts for real-world complex-
ities like contact friction and inertial effects.

Sim-to-Real Gap Across Diverse Garments

To further validate the superior material modeling capabili-
ties and generalizability of GarmentDynamics, we expanded
our experiments to include 7 distinct garment types in the
pseudo and robot model. These garments span a wide range
of variations in materials, structural designs, and topological
complexities. The results are summarized in Table 5.

GarmentDynamics demonstrates the lowest error across
nearly all garment types and manipulation actions, thereby
bridging the sim-to-real gap less than baseline simulators.
To conduct a concrete comparison, we selected the grasp
task as a representative to contrast how each simulator per-
forms in Figure 7. Additionally, we also compare the two
operation modes, providing a more comprehensive assess-
ment of the simulators’ behaviors in this experiment. We
find the sim-to-real gap increases for thicker and longer gar-
ments, due to complex surface friction caused by spatial con-
straints. The result shows GarentDynamics achieves the low-
est mean CDr2s errors, with consistent reductions of more
than 37% compared to PyBullet and Isaac Sim in pseudo
mode. Its advantage is particularly pronounced for topolog-
ically complex items. For instance, in Cakeskirt manipula-
tion, it reduces errors by up to 44% in pseudo mode and 77%
in the robot mode — a substantial improvement that under-
scores its ability to handle intricate garment structures.

Manipulation Mode (Robot vs. Pseudo): In robot mode,
modeling inaccuracies can lead to slippage, insufficient grip
strength, or erratic deformation, resulting in larger sim-to-
real gaps compared to pseudo mode. PyBullet fails critically
here: it struggles with failed grasps, severe penetration (grip-
pers passing through garments), and overly thin cloth ren-
dering, creating stark visual mismatches. These issues high-
light challenges in modeling contact and material properties,
while emphasizing our simulator’s superior fidelity in cap-
turing physical interactions and visual realism.
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Figure 7: Results of different garment types in grasp task

Conclusion and Discussion
In this work, we addressed the dual challenge of the sim-to-
real gap and performance limitations in robotic garment ma-
nipulation by Real-Garment Benchmark (RGBench), which
includes a diverse real-world dataset and GarmentDynam-
ics, a new high-fidelity, high-performance simulator. We fol-
lowed the protocol defined in RGBench to evaluate perfor-
mance across fundamental tasks such as grasping, flinging,
and folding. The results clearly show that GarmentDynam-
ics is the new state-of-the-art. It reduces the sim-to-real gap
by over 20% on average and by as much as 77% for topolog-
ically complex garments. In terms of speed, it is 3.0x faster
than its closest competitor, Isaac Sim, while robustly han-
dling high-complexity scenes where others fail and slash-
ing initialization time by over 90% Furthermore, we con-
firmed its fundamental accuracy on a prior benchmark for
simple fabrics, where it surpassed the SOTA by over 45%.
In the future, we aim to further enhance the benchmark’s ac-
curacy. Although perfect alignment of the garment’s initial
wrinkle state remains challenging, improvements in sensor
precision, delay compensation, and accurate measurement
of friction and damping can reduce this gap. Looking ahead,
we will fully utilize the richness in RGBench to train a gen-
eralized action policy for garment manipulations. We also
plan to enhance GarmentDynamics to handle more diverse
conditions, such as wetness, and extend its application to
more general deformable objects.
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Erickson, Z.; Held, D.; et al. 2024. Unfolding the literature:
A review of robotic cloth manipulation. Annual Review of
Control, Robotics, and Autonomous Systems, 8.
Lu, H.; Wu, R.; Li, Y.; Li, S.; Zhu, Z.; Ning, C.; Zhao,
Y.; Luo, L.; Chen, Y.; and Dong, H. 2024. Garmentlab:
A unified simulation and benchmark for garment manipu-
lation. Advances in Neural Information Processing Systems,
37: 11866–11903.
Miguel, E.; Bradley, D.; Thomaszewski, B.; Bickel, B.; Ma-
tusik, W.; Otaduy, M. A.; and Marschner, S. 2012. Data-
Driven Estimation of Cloth Simulation Models. Comput.
Graph. Forum (Eurographics), 31(2): 519–528.
Müller, M. 2008. Hierarchical Position Based Dynamics. In
Workshop on Virtual Reality Interaction and Physical Simu-
lation (VRIPHYS).
Müller, M.; Chentanez, N.; Kim, T. Y.; and Macklin, M.
2014. Strain Based Dynamics. In Proceedings of SCA, 149–
157.
Müller, M.; Heidelberger, B.; Teschner, M.; and Gross, M.
2005. Meshless Deformations Based on Shape Matching.
ACM Trans. Graph. (SIGGRAPH), 24(3): 471–478.
NVIDIA Corporation. 2021–2024. NVIDIA Isaac Sim.
https://developer.nvidia.com/isaac/sim.
Peng, Y.; Deng, B.; Zhang, J.; Geng, F.; Qin, W.; and Liu, L.
2018. Anderson Acceleration for Geometry Optimization



and Physics Simulation. ACM Trans. Graph. (SIGGRAPH),
37(4): 42:1–42:14.
Rasheed, A. H.; Romero, V.; Bertails-Descoubes, F.;
Wuhrer, S.; Franco, J.-S.; and Lazarus, A. 2021. A Visual
Approach to Measure Cloth-Body and Cloth-Cloth Friction.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 1–1.
Ren, T.; Liu, S.; Zeng, A.; Lin, J.; Li, K.; Cao, H.; Chen, J.;
Huang, X.; Chen, Y.; Yan, F.; Zeng, Z.; Zhang, H.; Li, F.;
Yang, J.; Li, H.; Jiang, Q.; and Zhang, L. 2024. Grounded
SAM: Assembling Open-World Models for Diverse Visual
Tasks. arXiv:2401.14159.
Sanchez, J.; Corrales, J.-A.; Bouzgarrou, B.-C.; and
Mezouar, Y. 2018. Robotic manipulation and sensing of
deformable objects in domestic and industrial applications:
a survey. The International Journal of Robotics Research,
37(7): 688–716.
Tang, M.; Manocha, D.; Yoon, S.-E.; Du, P.; Heo, J.-P.;
and Tong, R.-F. 2011. VolCCD: Fast Continuous Collision
Culling between Deforming Volume Meshes. ACM Trans.
Graph., 30(5): 111:1–111:15.
Tang, M.; Wang, H.; Tang, L.; Tong, R.; and Manocha, D.
2016. CAMA: Contact-Aware Matrix Assembly with Uni-
fied Collision Handling for GPU-Based Cloth Simulation.
Comput. Graph. Forum (Eurographics), 35(2): 511–521.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ interna-
tional conference on intelligent robots and systems, 5026–
5033. IEEE.
Volino, P.; and Magnenat-Thalmann, N. 2006. Resolving
Surface Collisions through Intersection Contour Minimiza-
tion. In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06,
1154–1159.
Volino, P.; Magnenat-Thalmann, N.; and Faure, F. 2009. A
Simple Approach to Nonlinear Tensile Stiffness for Accu-
rate Cloth Simulation. ACM Trans. Graph., 28(4): 105:1–
105:16.
Wang, H. 2015. A Chebyshev Semi-Iterative Approach
for Accelerating Projective and Position-Based Dynamics.
ACM Trans. Graph. (SIGGRAPH Asia), 34(6): 246:1–246:9.
Wang, H.; O’Brien, J. F.; and Ramamoorthi, R. 2011. Data-
Driven Elastic Models for Cloth: Modeling and Measure-
ment. ACM Trans. Graph. (SIGGRAPH), 30(4): 71:1–71:12.
Wang, Y.; Wu, R.; Chen, Y.; Wang, J.; Liang, J.; Zhu,
Z.; Geng, H.; Malik, J.; Abbeel, P.; and Dong, H. 2025.
DexGarmentLab: Dexterous Garment Manipulation En-
vironment with Generalizable Policy. arXiv preprint
arXiv:2505.11032.
Wu, B.; Wang, Z.; and Wang, H. 2022. A GPU-Based
Multilevel Additive Schwarz Preconditioner for Cloth and
Deformable Body Simulation. ACM Trans. Graph. (SIG-
GRAPH), 41(4).
Wu, L.; Wu, B.; Yang, Y.; and Wang, H. 2020. A Safe
and Fast Repulsion Method for GPU-Based Cloth Self Col-
lisions. ACM Trans. Graph., 40(1).

Yang, S.; Liang, J.; and Lin, M. C. 2017. Learning-Based
Cloth Material Recovery from Video. In IEEE International
Conference on Computer Vision, 4393–4403.
Zhang, Y.; Liu, F.; Liang, X.; and Yip, M. 2024. Achiev-
ing autonomous cloth manipulation with optimal control via
differentiable physics-aware regularization and safety con-
straints. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), 9931–9938. IEEE.
Zhou, B.; Zhou, H.; Liang, T.; Yu, Q.; Zhao, S.; Zeng, Y.;
Lv, J.; Luo, S.; Wang, Q.; Yu, X.; et al. 2023. Clothes-
net: An information-rich 3d garment model repository with
simulated clothes environment. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
20428–20438.



Supplementary Material
Appendix A Details of RGBench Datasets

A.1 Diverse Types from Two Primary Sources
Self-Collected Industrial Assets (4k+ models): These are production-ready garments engineered for both simulation and phys-
ical fabrication. They cover a wide spectrum of everyday apparel types, such as casual shirts, formal dresses, loose-fitting
sweaters, and structured blazers. Additionally, household textiles like absorbent dishcloths and decorative tablecloths are in-
cluded to align with typical indoor manipulation scenarios.

ClothesNet Sourced Meshes (2k+ models): Leveraging the large-scale 3D garment dataset ClothesNet, we incorporate
meshes from 11 carefully selected categories. These include Hat, Mask, Gloves, and Socks. This diverse range expands the
coverage of specialized garment types for comprehensive manipulation research.

A.2 Material Diversity and Physical Parameters
A core strength of the dataset is its emphasis on material variability—critical for sim-to-real transfer. We include 10 primary
fabric types (cotton, linen, wool, polyester, nylon, silk, knit, velvet, leather, fur), each with distinct mechanical properties that
significantly influence garment behavior during manipulation.

Key physical parameters are determined through rigorous processes. Direct Measurements for Stretch and Bending Stiff-
ness: For self-collected industrial assets, we utilize advanced tensile testing machines. These machines apply controlled forces
to fabric samples, measuring the stretch stiffness and bending stiffness. For example, cotton fabrics, which are commonly used
in casual wear, exhibit a high stretch stiffness of 1,000,000 g/s2, making them less prone to excessive stretching during grasping
tasks compared to more elastic materials like knit. The area density (mass per unit area) is measured using precision weighing
scales on carefully cut fabric swatches of known area. Thickness is gauged with specialized thickness gauges that ensure ac-
curate measurement under standardized pressure. These parameters are calibrated against real-world samples to ensure that the
simulation environment accurately mirrors the physical properties of the garments, which is crucial for tasks like folding where
the thickness of the fabric affects the number of layers and the forces required.

Notably, the parameterization framework is designed for extensibility. Researchers can leverage the reference values in the
table as a baseline and then independently adjust key parameters (stretch stiffness, bending stiffness, etc.) to simulate novel or
hybrid fabric behaviors. For instance, by moderately reducing the stretch stiffness of a virtual cotton garment toward knit-like
values, one can emulate the mechanical response of a cotton-knit blend. This flexibility supports the exploration of material
generalization in manipulation scenarios, enabling the testing of algorithms under diverse, user-defined fabric properties that
go beyond the physical samples in the dataset.

Material Sub - type Count Stretch stiffness (g/s²) Bending stiffness (g·m²/s²/rad) Area Density (g/m²) Thickness (mm)

Cotton 22 1000000 2800 170 0.26
Linen 10 130000 500 71 0.19
Wool 11 380000 650 220 0.38
Polyester 17 100000 1700 109 0.21
Nylon 5 65000 100 135 0.32
Silk 10 30000 150 60 0.19
Knit 20 25000 200 190 0.5
Velvet 5 70000 600 210 0.53
Leather 4 1000000 20000 500 1.74
Fur 7 1700000 2000 230.3 0.67

Table 3: Fabric material parameters

A.3 Industrial and Manufacturable Features
To bridge the gap between simulation and physical production, our dataset places a strong emphasis on producible fea-
tures—design elements that are critical for the real-world fabrication and functional behavior of garments during manipulation.
Figure 8 details the digital pattern design of a garment, showcasing two key components for physical fabrication and simulation.

Color-Coded Pairs show the seaming lines. Identical colors mark corresponding edges (e.g., sleeve edges, shoulder seams)
that will be stitched together. This ensures alignment during sewing, critical for structural integrity. These lines define how
garment panels connect, directly influencing collision behavior and deformation in simulation—e.g., a stitched shoulder seam
restricts stretching at that joint. Yellow Lines (Elastic/Folding Edges) Represent zones where elastic materials are applied or
intentional folding occurs. For example: Elastic Edges: Govern stretchable regions (e.g., waistbands), modeled with parame-
ters like “elastic length ratio” to simulate stretch/recovery. Folding Edges: Define pre-set fold lines (e.g., hems), with folding



angle controlling how sharply the fabric bends. These edges introduce localized mechanical behaviors—elastic edges increase
stretchability, folding edges reduce bending stiffness at specific zones—enabling accurate replication of real-world garment
dynamics. Standardized Topologies: The meshes of all garments in the dataset undergo thorough post-processing to ensure

Figure 8: Seaming line and feature edges

compatibility with simulation engines as shown in Figure 9. This includes creating watertight geometry, where all the edges
and faces of the 3D mesh are properly connected without gaps or overlaps. This pre-processing reduces the need for researchers
to perform extensive post-processing, allowing them to focus on developing and testing manipulation algorithms.

Figure 9: High-fidelity meshes

Leveraging high-fidelity meshes, seaming lines, and feature edges, the garments within this dataset are production-ready,
conforming to industrial-level standards. This ensures they can be directly utilized for physical fabrication, bridging the gap
between simulated garment models and real-world manufacturing processes, and providing a robust resource for research in
robotic garment manipulation.

A.4 Ground Truth (GT) for Manipulation Tasks
For core manipulation tasks (Grasp, Fling, Fold), we select 9 representative cloth types to capture real-world point clouds as
GT. This ensures generalizability: By spanning materials from rigid (leather) to highly deformable (silk), the dataset supports
robust algorithm development for diverse manipulation scenarios. A leather jacket, with its high bending stiffness and low
deformability, presents a different challenge for robotic manipulation compared to a silk scarf, which is highly deformable and
prone to complex folding patterns. Including such a wide range of materials ensures that the developed algorithms can handle
the variability encountered in real-world garment manipulation.

Appendix B Details of Real-to-Sim Alignment

B.1 World Coordinate and Origin Alignment
Our experimental setup is depicted in Figure 10. A camera is mounted approximately 2 meters from the workspace, angled to
ensure a comprehensive view of the garment both on the tabletop and during manipulation. The world coordinate system in our
simulation is defined relative to the dual-arm Piper robot. The origin is set at the midpoint between the two robot bases. The
coordinate system is right-handed, with the +x axis pointing forward from the robot, the +z axis pointing upward, and the +y
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Figure 10: Experiment Setup

axis oriented along the line connecting the two arms. The translation vectors for the left and right robot arm bases relative to
this origin are [0, −0.25, 0] and [0, 0.25, 0]m, respectively, each with an identity rotation.

B.2 Garment Initial State Alignment
To ensure consistent initial garment placement, we utilized a physical template, shown in Figure 11, precision-cut to the gar-
ment’s outline. This template standardizes the initial garment pose to a translation of [0.1,0.0,0.0] and an identity rotation. To
prevent initial collision with the tabletop surface, the garment is initialized at a minimal height of 0.01 m. Thus, the complete
initial state of the garment is represented by the 7D vector [0.1,0.0,0.01,1.0,0.0,0.0,0.0], corresponding to the position (x,y,z)
and the orientation as a unit quaternion (qw,qx,qy ,qz)

Figure 11: Garment Initial State Template

B.3 Alignment of Camera Coordinate System and Robot Coordinate System
We align the camera and robot coordinate systems using two complementary methods. The primary method is a standard hand-
eye calibration. By affixing a checkerboard pattern to the robot’s end-effector, we capture multiple configurations and solve the
AX = XB problem to find the rigid transformation between the camera and robot frames.

To refine this calibration and mitigate potential errors, we employ a secondary alignment step using point cloud registration.
Given the precisely defined initial pose of the garment, we first perform a coarse manual alignment between the simulated



Figure 12: Initial model state (left) , Initial Point Cloud State (middle), initial state alignment result (right)

model’s point cloud and the initial real-world point cloud from the camera. Subsequently, we apply the Iterative Closest Point
(ICP) algorithm to achieve a fine-grained registration. Since the garment’s coordinate system is already co-aligned with the
world and robot frames, this process precisely unifies all coordinate systems. Figure 12 demonstrates the high fidelity of this
process, showing the source model, the target real-world point cloud, and the final registered result.

B.4 Alignment of Time System
Real-world camera systems introduce latency, which can cause significant sim-to-real discrepancies in dynamic tasks. Through
testing, we observed that for a stable camera frame rate, this temporal offset is highly consistent. We therefore apply a fixed-
delay compensation to the incoming point cloud stream, synchronizing the real-world data with the simulation and minimizing
errors during dynamic manipulation.

Appendix C Complementary Experiment Results

To provide a comprehensive understanding of the effectiveness of our proposed simulation environment (GarmentDynamics),
we present a detailed quantitative analysis of its performance in both pseudo and robot execution modes, using four canoni-
cal shape similarity metrics: CDs2r, CDr2s, HDs2r, and HDr2s. We compare GarmentDynamics with two widely adopted
simulators, PyBullet and IsaacSim, across diverse manipulation tasks and garment types.

C.1 Pseudo-Mode (Fixed-Point) Simulation
Task-wise Performance Comparison Fling operations represent the most dynamic evaluation scenario. GarmentDynamics
achieves CDr2s = 0.041m compared to PyBullet’s 0.064m and IsaacSim’s 0.061m, demonstrating 36% and 33% error re-
ductions respectively. The bidirectional consistency is confirmed by CDs2r performance at 0.059m versus baseline values of
0.085m and 0.082m, representing 31% and 28% improvements.

Fold operations constitute the most geometrically challenging evaluation. Our method achieves exceptional CDr2s =
0.020m versus PyBullet’s 0.037m and IsaacSim’s 0.043m, yielding 46% and 54% error reductions. The CDs2r metric cor-
roborates this advantage at 0.031m versus baseline values of 0.043m and 0.034m, showing a 28% improvement over PyBullet
while achieving comparable performance to IsaacSim.

Grasp interactions test contact modeling accuracy. GarmentDynamics demonstrates robust performance with CDr2s =
0.024m compared to PyBullet’s 0.039m and IsaacSim’s 0.040m, achieving 38% and 40% error reductions. The CDs2r metric
shows 0.042m versus baseline values of 0.055m and 0.062m, demonstrating 24% and 32% improvements.

The task-specific performance variations reveal fundamental differences in underlying physics mechanisms and error prop-
agation patterns. Notably, fold tasks demonstrate the largest CDr2s improvements (46-54%); their quasi-static nature allows
our advanced constraint handling and seam topology constraints to dominate performance, preventing the constraint drift and
artificial stiffening that plague explicit solvers during large, low-velocity deformations. Following this, grasp tasks show inter-
mediate improvements (38-40%), representing a balanced physics regime where our friction cone constraints excel at modeling
the realistic slip-stick transitions of localized, contact-dominated interactions. In contrast, fling tasks yield more moderate but
consistent gains (33-36%), reflecting the inherent challenges of highly dynamic scenarios. While our anisotropic FEM formu-
lation accurately captures fabric properties during rapid acceleration, the competing demands between inertial accuracy and
numerical stability limit the improvement margins compared to quasi-static cases.

Garment-wise Performance Comparison Garments with simple topologies and smooth surfaces(T-shirt, L-Sleeves),
achieves the highest absolute accuracy, with CDr2s values consistently in the low 0.020-0.041m range. The relative im-
provements are the largest observed, ranging from 36-46%. For instance, in fold operations, the CDr2s is 0.020m, a 46%
improvement over PyBullet.



Cloth Action CDs2r(m) CDr2s(m) HDs2r(m) HDr2s(m)
pybullet isaacsim ours pybullet isaacsim ours pybullet isaacsim ours pybullet isaacsim ours

Hoodie Fling 0.0523 0.0617 0.0425 0.0310 0.0352 0.0256 0.1736 0.1906 0.1409 0.1307 0.1493 0.1254
Hoodie Fold 0.0381 0.0457 0.0355 0.0240 0.0302 0.0225 0.1720 0.1635 0.1726 0.0952 0.0966 0.1493
Hoodie Grasp 0.0561 0.0639 0.0404 0.0275 0.0308 0.0217 0.2004 0.2531 0.1763 0.0947 0.1008 0.0882

Dress Fling 0.1197 0.1286 0.0954 0.0889 0.0928 0.0687 0.2643 0.2786 0.2204 0.2007 0.2228 0.1765
Dress Fold 0.0382 0.0464 0.0241 0.0331 0.0459 0.0187 0.1361 0.1422 0.0977 0.1229 0.1338 0.0800
Dress Grasp 0.0559 0.0562 0.0282 0.0433 0.0490 0.0221 0.1539 0.1490 0.0944 0.1468 0.1563 0.0953

Coat Fling 0.1372 0.0729 0.0540 0.1071 0.0815 0.0379 0.5176 0.2485 0.1654 0.2737 0.2406 0.1239
Coat Fold 0.0494 0.0431 0.0443 0.0309 0.0346 0.0279 0.2094 0.1450 0.1707 0.1251 0.1182 0.1083
Coat Grasp 0.1069 0.0700 0.0681 0.0573 0.0605 0.0320 0.3612 0.2235 0.2312 0.1817 0.1395 0.1053

T-Shirt Fling 0.0675 0.0721 0.0546 0.0532 0.0567 0.0419 0.2113 0.1986 0.1644 0.1522 0.1710 0.1197
T-Shirt Fold 0.0309 0.0370 0.0209 0.0227 0.0314 0.0132 0.1217 0.1275 0.0980 0.0778 0.0966 0.0512
T-Shirt Grasp 0.0476 0.0426 0.0349 0.0348 0.0341 0.0226 0.1676 0.1489 0.1420 0.1109 0.1058 0.0798

Pleat Skirt Fling 0.0654 0.0613 0.0572 0.0540 0.0388 0.0326 0.1473 0.1511 0.1446 0.1236 0.1089 0.0736
Pleat Skirt Fold 0.0210 0.0250 0.0171 0.0256 0.0255 0.0126 0.0737 0.0856 0.0582 0.1383 0.1199 0.0857
Pleat Skirt Grasp 0.0300 0.0237 0.0287 0.0241 0.0201 0.0159 0.0892 0.0788 0.0991 0.0878 0.0908 0.0707

Cakeskirt Fling 0.0852 0.1021 0.0579 0.0588 0.0598 0.0406 0.2056 0.2319 0.1744 0.1767 0.1872 0.1725
Cakeskirt Fold 0.0410 0.0519 0.0304 0.0266 0.0308 0.0179 0.1497 0.1642 0.1327 0.1082 0.1082 0.0962
Cakeskirt Grasp 0.0778 0.0822 0.0439 0.0487 0.0517 0.0269 0.2120 0.2036 0.1485 0.1573 0.1719 0.1222

L-Sleeves Fling 0.0697 0.0778 0.0564 0.0518 0.0600 0.0422 0.2104 0.2255 0.1912 0.1770 0.2058 0.1547
L-Sleeves Fold 0.0443 0.0547 0.0428 0.0280 0.0308 0.0243 0.1746 0.1895 0.1775 0.1252 0.1171 0.0982
L-Sleeves Grasp 0.0524 0.0477 0.0471 0.0347 0.0312 0.0280 0.1734 0.1692 0.1757 0.1394 0.1123 0.1106

Table 4: Quantitative Results in Pseudo Mode (CD/HD in m)

Garments characterized by features like multiple layers and complex seam lines(Dress, Hoodie, Coat), represents cases with
moderate absolute accuracy. The relative improvements over baseline methods are strong and consistent, typically in the 25-
35% range.

Garments featured with dense pleats and ruffles(Cakeskirt, Pleat Skirt), corresponds to the lowest absolute accuracy (i.e., the
highest raw CDr2s values). Despite the inherent difficulty, our method delivers a consistent and valuable relative improvement
of 15-25%.
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Figure 13: Pseudo-Mode simulation results emphasizing CDr2s performance across fling, fold, and grasp tasks. Garment-
Dynamics consistently achieves the lowest real-to-simulation errors across all evaluation scenarios, with particularly strong
performance in complex deformation scenarios (fold tasks) and robust performance in dynamic interactions (fling and grasp
tasks).

The performance hierarchy reveals three distinct regimes based on the garments’ intrinsic properties, characterized by both
the absolute simulation accuracy and the relative improvement. Garments with Low Geometric Complexity achieve the highest
absolute accuracy because they are inherently simpler to simulate. Our method’s largest relative improvements (36-46%) occur
here because, with minimal geometric bottlenecks, performance is dominated by the fidelity of the physics model, where our
approach is theoretically superior. Garments with Moderate Structural Complexity have a higher absolute error floor due to their
features. Our strong relative improvement (25-35%) demonstrates that our specialized handling of seams and layers provides



a reliable advantage as problem difficulty increases. Garments with High-Frequency Geometric Details present the highest
absolute error due to collision detection challenges. The consistent relative improvement (15-25%) proves that even when
pushed to its limits, our engine’s stability robustly maintains a measurable advantage, showcasing graceful degradation under
extreme stress.

Pseudo-Mode Summary Across all Pseudo-Mode evaluations, GarmentDynamics demonstrates consistent CDr2s superior-
ity with improvements ranging from 28% to 54% over baseline methods. The performance gains stem from three synergistic
methodological innovations working in concert: anisotropic FEM formulation capturing fabric microstructure and directional
properties, GPU-accelerated collision detection enabling complex topology handling with sub-linear scaling, and implicit inte-
gration maintaining numerical stability under large deformations.

C.2 Robot-Mode (Interactive) Simulation

Cloth Action CDs2r(m) CDr2s(m) HDs2r(m) HDr2s(m)
pybullet isaacsim ours pybullet isaacsim ours pybullet isaacsim ours pybullet isaacsim ours

Hoodie Fold 0.0858 0.0875 0.0469 0.0489 0.0451 0.0312 0.2857 0.2933 0.1998 0.1865 0.1804 0.1642
Hoodie Grasp 0.2941 0.2868 0.0502 0.2422 0.2313 0.0537 0.4789 0.4748 0.2032 0.4409 0.4098 0.1789

Dress Fold 0.0646 0.0489 0.0235 0.0575 0.0395 0.0199 0.2145 0.1548 0.0955 0.2367 0.1530 0.0901
Dress Grasp 0.1705 0.1613 0.0312 0.1646 0.1287 0.0299 0.3609 0.3258 0.1108 0.3912 0.2917 0.1413

Coat Fold 0.0860 0.0786 0.0387 0.0698 0.0607 0.0220 0.2576 0.2347 0.1563 0.2629 0.2167 0.0871
Coat Grasp 0.1482 0.1141 0.0650 0.1551 0.1018 0.0268 0.4149 0.3477 0.2050 0.4125 0.2714 0.0883

T-shirt Fold 0.0637 0.0527 0.0212 0.0460 0.0527 0.0113 0.1958 0.1549 0.0959 0.1824 0.1685 0.0528
T-shirt Grasp 0.2275 0.0806 0.0341 0.2390 0.0732 0.0234 0.4021 0.2111 0.1399 0.4360 0.1926 0.0960

Pleat Skirt Fold 0.0318 0.0365 0.0205 0.0386 0.0265 0.0113 0.1104 0.1198 0.0747 0.1602 0.1275 0.0673
Pleat Skirt Grasp 0.1049 0.0873 0.0406 0.1449 0.0997 0.0345 0.1625 0.1496 0.1379 0.2854 0.1979 0.1070

Cakeskirt Fold 0.0639 0.0553 0.0284 0.0538 0.0344 0.0168 0.2534 0.1848 0.1135 0.2408 0.1842 0.0891
Cakeskirt Grasp 0.2452 0.2186 0.0428 0.2223 0.1486 0.0342 0.4663 0.3959 0.1487 0.4882 0.3270 0.1472

L-Sleeves Fold 0.1125 0.0773 0.0425 0.0799 0.0386 0.0247 0.2833 0.2377 0.1726 0.2708 0.1619 0.1062
L-Sleeves Grasp 0.2046 0.1452 0.0577 0.2276 0.1525 0.0844 0.4118 0.3477 0.1763 0.4761 0.3646 0.2757

Table 5: Quantitative Results in Robot Mode

Robot-Mode evaluation introduces controlled interaction noise mimicking robotic manipulation uncertainties, providing crit-
ical validation for practical deployment scenarios where CDr2s accuracy determines manipulation success rates.

Task-wise Performance Comparison Interactive folding operations reveal exceptional robustness. We achieve CDr2s =
0.020m compared to PyBullet’s 0.056m and IsaacSim’s 0.042m, representing 65% and 54% error reductions. Supporting
CDs2r metrics show exceptional 56% and 49% improvements.

Interactive grasping showcases superior contact modeling under uncertainty. Our method achieves CDr2s = 0.041m versus
PyBullet’s 0.199m and IsaacSim’s 0.134m, representing extraordinary 79% and 69% error reductions. The CDs2r metric
shows 70% and 71% improvements.

Garment-wise Performance Comparison T-shirt and L-Sleeves maintain the highest absolute accuracy even under noise,
with CDr2s values like 0.020m in fold tasks. They achieve the highest relative improvements, often in the 65-79% range, as
baseline methods degrade significantly more under noise.

Dress, Hoodie and Coat exhibit solid absolute accuracy under noise. They demonstrate strong relative improvements, typi-
cally in the 50-65% range, showcasing a robust balance between managing internal complexity and external perturbations.

Cakeskirt and Pleat Skirt present the most challenging absolute accuracy scenarios in Robot-Mode. Nevertheless, our method
robustly delivers a consistent and significant relative improvement of 40-55%.

CDr2s performance under interaction noise highlights how intrinsic garment properties and robustness mechanisms interact.
Garments with Low Geometric Complexity maintain the highest absolute accuracy. Their simplicity allows our robustness
mechanisms to focus on mitigating external noise, leading to the highest relative improvements (65-79%) as baseline methods
fail catastrophically. Garments with Moderate Structural Complexity show solid absolute accuracy. Their inherent structure
provides some physical damping, which complements our numerical robustness, resulting in strong relative improvements (50-
65%) as our method effectively prevents noise propagation. Garments with High-Frequency Geometric Details have the lowest
absolute accuracy as external noise exacerbates the geometric challenges. The consistent relative improvement (40-55%) is
critical, demonstrating that our architecture is fundamentally more stable and degrades gracefully, whereas baselines become
unusable.



Robot-Mode Summary Despite the introduction of rigid-flexible body interactions, GarmentDynamics maintains a 49%to
79%relative advantage over the baseline approach in all robotics mode scenarios. This stems from our accurate physical mod-
eling and robust collision mechanism.
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Figure 14: Robot-Mode simulation results.

Conclusion
The comprehensive experimental validation demonstrates GarmentDynamics’ transformative advancement in cloth simulation
accuracy and robustness. Consistent improvements ranging from 20% to 77% across Pseudo-Mode and Robot-Mode scenar-
ios stem from principled physics modeling, efficient collision detection, and robust integration schemes. The superior CDr2s

consistency between evaluation modes validates universal applicability from computer graphics to robotic manipulation, estab-
lishing GarmentDynamics as a reliable foundation for next-generation applications.

Appendix D Comparison of Garments Dynamics Garment Simulators

D.1 Discussion with Differentiable Simulators
Differentiable simulators, such as DiffCloth, are currently very popular. However, in this comparison, our goal differs: We focus
on forward simulation fidelity, not gradient-based optimization. Differentiable simulator’s accuracy still depends on forward
simulation, while our method prioritizes real-time performance and robot–cloth stability. Moreover, DiffCloth uses virtual
points and lacks robotic interaction. Differentiability can be supported in future extensions if needed.

D.2 Discussion with Other FEM Simulator
Numerous FEM-based clothing simulators exist, with Arcsim being a typical example. While Simulators like ArcSim are also
an FEM simulator, they are not directly comparable for our robotics-focused tasks. On the other hand, simulators based on
principles similar to ArcSim struggle to achieve GPU acceleration due to their collision handling mechanisms relying on heavy
remeshing. In contrast, our method is fully GPU-accelerated and designed for robust robot-cloth interaction.

Appendix E Details of Benchmark Simulators

E.1 Criteria for Selecting Simulators
The two key criteria for selecting a simulator are: 1. Support for deformable object simulation. 2. Support for collaborative
simulation between deformable objects and robots. In the field of deformable object and clothing simulation, MuJoCo, PyBullet
(based on Bullet), and Isaac Sim (integrated with Flex) employ distinct modeling approaches to capture fabric dynamics and
deformation behavior.

E.1 MuJoCo: Mass-Spring System
Mujoco use Mass-Spring System as its deformable model, and it rephrases the problem of flexibility in the language its solver
already understands: bodies, joints, and constraints.



A Mass-Spring System (MSS) is a method that discretizes a continuous object into a set of point masses (particles) connected
by a network of springs. The system’s dynamics are governed by applying Newton’s second law to each particle, with forces
calculated for each spring. To simulate the different mechanical properties of cloth, several types of springs are typically
configured: Structural Springs: Connect adjacent particles (e.g., in a grid) to resist stretching and compression along the warp
and weft directions. Shear Springs: Connect particles diagonally to resist shearing forces. Bending Springs: Connect more
distant particles (e.g., every other particle) or between adjacent triangles to resist bending. The combination of these spring
types dictates the characteristic behavior of the cloth. The force exerted by a spring is typically calculated using Hooke’s Law,
often with a damping term to dissipate energy and improve stability. The formula can be expressed as:

F = −ks · (|L| − L0) ·
L

|L|
− kd ·

(vrel · L)
|L|

· L

|L|

where ks is the stiffness coefficient, kd is the damping-coefficient, L is the vector connecting two particles, and Ld is the
spring’s rest length.

This system of ordinary differential equations (ODEs) must be solved numerically over discrete time steps ∆t. Common
methods include explicit Euler or the more stable Verlet integration. A major drawback of explicit MSS is that high spring
stiffness, necessary to simulate inextensible cloth, requires very small time steps ∆t to avoid numerical instability and ”explo-
sions”. This creates a conflict between realism and performance. This instability can lead to an unrealistic ”super-elastic” effect
where the cloth overstretches, especially with simple explicit integration schemes.

E.2 Isaac Sim: Position-Based Dynamics, PBD
Issac Sim use the Position-Based Dynamics to describe the deformable object in PhysX, which is designed for massive paral-
lelization on the GPU.

Unlike force-based methods that update positions by integrating accelerations, PBD directly manipulates the positions of
particles in an iterative fashion to satisfy geometric constraints. Velocities are computed implicitly from the change in position.
The PBD simulation loop follows a distinct structure: Predict Tentative Positions (p): Apply external forces (like gravity) and
integrate velocities to predict a new, unconstrained position for each particle: pi = xi+∆t · vi. Generate Collision Constraints:
Detect potential collisions and create temporary constraints. Iterative Constraint Projection: This is the core of PBD. For a
fixed number of iterations, the algorithm cycles through all constraints (e.g., distance, bending, collision). For each violated
constraint C(p) ̸= 0, it computes a correction ∆p that moves the involved particles to satisfy the constraint. This is often done
by projecting the positions along the constraint gradient ∇(p). Update Velocities and Positions: After the solver loop, the final
corrected positions pi are used to update the official velocities and positions: vi = (Pi − xi)/∆t and xi = pi.

Inherent Stability: PBD is unconditionally stable. By directly manipulating positions and avoiding the feedback loop of
large forces causing large accelerations, it sidesteps the stability issues of explicit force methods, allowing for larger time
steps. Controllability: Direct control over particle positions makes it easy to handle user interaction, attachments, and collision
response.

PBD often provides ”visually plausible” results but is a potential lack of physical accuracy compared to FEM. The material’s
behavior becomes dependent on the solver’s iteration count and time step, not just intrinsic material properties.

E.3 PyBullet: Mass-Spring and Neo-Hookean System
PyBullet offers explicit, user-selectable physics models for soft bodies via its ’p.loadSoftBody’ function. This is a key architec-
tural differentiator from the other two simulators.

The Neo-Hookean model is a fundamental hyperelastic constitutive model used to describe the nonlinear stress-strain behav-
ior of materials undergoing large, recoverable deformations, such as rubber and other polymers. It extends Hooke’s law into the
nonlinear regime by defining a strain energy density function, W , from which the stress response is mathematically derived. For
a simple, incompressible material, this function is defined as W = C10(Ī1 − 3), where C10 is a material constant related to the
initial shear modulus and Ī1 is the first invariant of the isochoric part of the deformation tensor. This formulation, based on the
statistical thermodynamics of cross-linked polymer chains, effectively captures the mechanical response of many elastomers up
to moderate strains.

Pybullet’s FEM Model (Neo-Hookean) is specifically a neo-Hookean hyperelastic model, suitable for materials like rubber
and plastic.

E.4 Garment Dynamics: Continuum FEM model and GPU-Acceleration
Cloth Physical Model We model the cloth as a continuous deformable surface, discretized with a triangular finite element
mesh. This finite-element (continuum) model supports stretch/shear and bending modes naturally. Importantly, as proven in
continuum mechanics, this FEM approach converges to the correct solution as the mesh is refined. In contrast, Bullet/PhysX
cloth are typically built from simple spring systems or constraint distances. Mass-spring models only approximate the contin-
uum and suffer from artifacts (e.g., mesh-dependence and improper shear response).



We solve the stiff ODE for cloth dynamics using a globally implicit solver, allowing large stable time-steps even for highly
inextensible cloth. This is crucial because realistic cloth has very high stretch stiffness and would make the system stiff. By
contrast, real-time engines use explicit or position-based solves. For example, PhysX/IsaacSim uses a PBD solver that iteratively
enforces distance constraints between particles. Such methods require small time-steps or suffer inaccuracies: indeed, PhysX’s
iterative solver can still produce unwanted stretch under gravity even with maximum stiffness. Our implicit method avoids this,
faithfully preserving fabric inextensibility.

We detect and resolve all forms of cloth self-contact (vertex-face, edge-edge and edge-face) with physically-based collision
response and Coulomb friction. Baraff et al. originally handled cloth self-intersection by adding stiff penalty springs whenever
a vertex penetrates a triangle, and our implementation follows this robust collision strategy. In contrast, many built-in simulators
use heuristic approximations: for example, PhysX cloth uses per-particle “collision spheres” and optional “virtual” interpolation
points, which can miss edge-edge or edge-face contacts and allow inter-penetrations. Academic studies note that realistic
garment simulation requires self-collision, by handling continuous collisions thoroughly, we avoid spurious cloth intersections
and achieve lifelike draping and folding.

Our simulator is driven by actual measured fabric properties (areal density, thickness, elastic moduli). Prior to simulation,
we characterize each fabric on testing equipments to obtain its stretch and bending stiffness. Research confirms that using real
bending and stretch stiffness in simulation greatly improves drape accuracy. In practical terms, this means a heavy cotton and a
light silk will behave very differently in our simulator as they do in reality. In contrast, standard engines typically use default or
hand-tuned stiffness coefficients that do not reflect specific fabric behavior, so they tend to produce generic or overly stretchy
cloth.

GPU Performance Optimization Our GPU-based cloth simulator achieves much higher throughput than traditional engines
(e.g., Isaac Sim/PhysX and Bullet) by combining full CUDA acceleration with algorithmic advances. First, all stages of the
simulation run on the GPU using highly optimized kernels. We carefully minimize costly operations (such as thread synchro-
nization and atomic updates) and lay out sparse matrix data structures to maximize coalesced memory access.

We solve cloth dynamics via implicit Euler integration on GPU. Each timestep minimizes the energy:

L(x) = 1

2∆t2
(x− xn)

⊤M(x− xn) + E(x), (6)

where xn is the previous position, M the mass matrix, and E(x) the elastic potential. Setting ∇L = 0 and applying Newton’s
method yields the linear system (

M

∆t2
+H

)
∆x = −∇E(xn), (7)

where H = ∇2E(xn) is the stiffness Hessian. This implicit update is unconditionally stable even for stiff cloth, allowing
much larger ∆t than explicit methods. Each Newton iteration solves this symmetric positive-definite system for the position
increment ∆x, and Newton’s method converges quadratically near the solution, which means very few global iterations are
needed. By contrast, Position-Based Dynamics (PBD) or constraint-projection methods (as used in PhysX/Bullet) are akin
to block coordinate descent, which only has linear convergence. In a PBD solver, each substep ”integrates particle positions,
solves constraints. . . ” iteratively, reducing the constraint violation by a fixed fraction each pass. Such methods must repeat
many sweeps to converge, runtime grows linearly with the number of solver iterations (solver frequency). In our solver, one
Newton iteration typically with 50 Preconditioned Conjugate Gradient iterative method(PCG) steps suffices, giving the same
or better stability with far fewer solves.

To accelerate the linear solver(PCG), we incorporate an algebraic multigrid (AMG) preconditioner under the Additive
Schwarz framework. In particular, we adopt the MAS scheme of Wu et al. (2022): the global matrix

(
M/∆t2 +H

)
is ap-

proximated by a block-diagonal inverse built from many small, non-overlapping subdomains. Each block’s inverse is com-
puted once (via inexpensive Gauss–Jordan elimination) and stored. At runtime, applying this preconditioner to a residual in-
volves conflict-free block sparse operations on the GPU. The effect is a drastically reduced condition number. In other words,
M−1

pc

(
M/∆t2 +H

)
has a far smaller eigenvalue spread, so PCG converges in fewer iterations. Since each PCG step is a sparse

matrix-vector multiply (efficient on GPU) and a few vector updates, reducing iterations directly cuts runtime. Traditional cloth
engines lack such advanced preconditioning: PhysX and Bullet do not form the global Hessian at all, and so cannot exploit
multigrid-like acceleration.

Another key acceleration is hardware-based collision detection. We build a bounding-volume hierarchy (BVH) for meshes
and use NVIDIA’s RTX ray-tracing cores to perform broad-phase collision queries in parallel. Concretely, each cloth particle
or element casts a ”ray” (or probe) into the scene BVH; the RT core hardware then executes the BVH traversal and ray-AABB
tests internally. This lets us handle millions of collision checks per second. By contrast, PhysX/Bullet typically use CPU or
simple GPU kernels for collision and do not leverage dedicated BVH hardware. Our approach therefore greatly reduces the
per-frame cost of collision handling, especially as mesh resolution grows.

Our sparse matrix data structures and low-level tuning improve raw throughput. We store the system matrix in a format
optimized for GPU memory coalescing, and fuse kernels to reduce memory traffic. Whereas a naive sparse solver might incur
uncoalesced reads or frequent atomics, our implementation packs data so that each warp processes contiguous memory, and
uses atomic-free reductions.



Summary 1. Realism. The realism of a physics-based simulator depends primarily on two factors: the physical models
that describe material deformation and contact mechanics, and the accuracy of the material properties provided as parameters to
those models. Compared with other simulators such as Isaac Sim and Bullet, our simulator achieves higher realism through more
accurate, physically based elastic FEM models and integrated measurement tools for acquiring material property parameters
directly from the real world.

2. Robustness. Our simulator is numerically robust due to the use of an implicit Euler integration scheme in the solver. It is
also robust in handling collisions, with very few penetrations occurring at runtime. This robustness is achieved through a hybrid
approach that combines potential-based contact forces with a collision-untangling mechanism. The latter serves as a fail-safe
guarantee: it is rarely triggered but ensures that, under extreme conditions, the simulation can recover to a penetration-free state.

3. Efficiency. Finally, compared with other simulators, our system is significantly more efficient both algorithmically
and in implementation. On the algorithmic side, we incorporate techniques such as multilevel preconditioning, inexact Newton
iterations, and a hybrid collision-handling strategy. These methods enable our simulator to converge much faster than constraint-
based approaches used in systems like Isaac Sim and Bullet, especially when dealing with meshes containing a large number
of vertices. On the implementation side, our simulator leverages a variety of GPU-acceleration techniques and fully exploits
advanced GPU features such as RTX ray intersection and kernel fusion.

Appendix F Details of Physical Parameters

Our simulator supports anisotropic physical parameters. We evaluated the performance of isotropic and anisotropic physical
parameters on a T-shirt under grasping and folding conditions. The experimental results for l1 real-to-sim show an average
difference of |0.021608 − 0.022167| = 0.000559, with sub-millimeter accuracy (less than 1 mm) and a percentage difference
of 2.6%. In the folding scenario, the real-to-sim (r2s) values were 0.012347 for isotropic parameters versus 0.012333 for
anisotropic parameters, while the sim-to-real (s2r) values were 0.20997 for isotropic parameters compared to 0.21292 for
anisotropic parameters, resulting in percentage differences of 1.13% and 1.3% respectively.

Experiments show that the anisotropic–isotropic difference accounts for 2.6% of total error. Since our tasks do not involve ex-
treme stretching/bending, we instead use the same value for simplicity. Future work will incorporate anisotropy when necessary.
Measurements follow ASTM standards via quasi-static tests, with minimal environmental force and friction influence.

Appendix G Details of Operation Mode

In addition to the two garment manipulation modes outlined in the main text—robot interaction mode and pseudo interaction
mode—this appendix provides further details regarding the implementation of the robot mode and the pseudo mode.

To ensure alignment with real-world robotic manipulation, the robot mode incorporates key measures for accuracy:
URDF Calibration via Kinematics: In the robot mode, to maintain consistency between the simulated robotic arm and the real-

world counterpart, we perform forward and inverse kinematics calibration on the URDF (Unified Robot Description Format)
files. This calibration process corrects for any potential modeling inaccuracies in the URDF, ensuring that the simulated robotic
arm’s movements, joint angles, and overall behavior closely match those of the real mechanical arm. By doing so, we can more
accurately simulate the complex interactions between the robotic arm, its gripper, and the garment.

Unified URDF-to-USD Conversion for Multi - Simulator Consistency: We utilize a unified URDF model for the robotic
arm. This URDF model is then converted to the USD (Universal Scene Description) format for use in the Isaac sim simulation
environment. This conversion process guarantees that the robotic arm and its gripper maintain consistent geometry, kinematics,
and appearance across multiple simulation setups. Whether we are conducting initial tests, fine-tuning garment manipulation
algorithms, or comparing results across different simulation scenarios, the robotic arm’s behavior remains predictable and
consistent, which is crucial for reliable sim-to-real and real-to-sim evaluations.

The pseudo interaction mode, designed to simplify the simulation of robotic arm motions while focusing on garment dy-
namics during manipulation, operates through a specific mechanism for initiating cloth manipulation: When simulating the
grasping action, the system identifies and selects the vertex on the garment mesh that is closest to the end-effector position of
the robotic gripper at the precise moment of intended grasping. This selected vertex serves as the ”virtual grasp point” for the
pseudo mode. By directly controlling the movement of this, the pseudo mode bypasses the detailed simulation of gripper joint
motions and physical constraints. Instead, it prioritizes the accurate representation of how the garment responds dynamically to
being manipulated—capturing stretches, folds, and other deformations—without replicating the full complexity of robotic arm
kinematics or potential grip-related issues.

This distinction in operational mechanisms underlies the differences in performance noted between the two modes. The robot
mode, while more physically comprehensive, is susceptible to modeling inaccuracies that manifest as slippage, insufficient
grip strength, or erratic deformation—issues exacerbated by limitations in simulators like PyBullet, such as failed grasps,
severe penetration artifacts, and unrealistic cloth rendering. These challenges highlight the difficulties in accurately modeling
contact dynamics and material properties. In contrast, the pseudo mode’s simplified approach, centered on direct vertex control
via virtual grasp points, avoids many of these simulator-specific limitations, resulting in smaller sim-to-real gaps in certain



scenarios, as noted in the main text. Our framework’s inclusion of both modes allows for a comprehensive analysis of garment
manipulation, with each mode offering unique insights into the interplay between manipulation mechanisms and garment
dynamics.


